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We consider biorthogonal systems in quasi-Banach spaces such that the greedy
algorithm converges for each x # X (quasi-greedy systems). We construct quasi-
greedy conditional bases in a wide range of Banach spaces. We also compare the
greedy algorithm for the multidimensional Haar system with the optimal m-term
approximation for this system. This substantiates a conjecture by Temlyakov.
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1. INTRODUCTION

We consider a general quasi-Banach space X with the norm & }& such
that for all x, y # X we have &x+ y&�:(&x&+&y&). The letter : will always
in this paper denote this constant. It is well known (cf. [3] Lemma 1.1.)
that in such a situation there is a p, 0<p�1, such that &�n xn &�
41�p(�n &xn& p)1�p. Recall that a biorthogonal system in a quasi-Banach
space X is a family (xn , xn*)n # F /X_X* such that xn*(xm) equals zero
whenever n{m and equals one if n=m. Here F is any countable index set.
We fix a biorthogonal system (xn , xn*)n # F in X such that span(xn)n # F=X
and infn # F &xn &>0 and supn # F &xn*&<�. This implies that for each x # X
we have limn � � xn*(x)=0. For each x # X and m=1, 2, ... we define

Gm(x)= :
n # A

xn*(x) xn , (1)

where A/F is a set of cardinality m such that |xn*(x)|�|xk*(x)| whenever
n # A and k � A. The above set may not be uniquely defined but if this
happens we take any such set. The operator Gm(x) is a non-linear and
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discontinuous operator. We will use linear projection operators PA defined
for any finite subset A/F by the formula PA(x)=�n # A xn*(x) xn .

This simple theoretical algorithm is a model for a procedure which is
widely used in numerical applications. It also raises many interesting
questions in functional analysis. The reader can find in [9]�[11] a more
detailed description of the connections with purely numerical questions and
results for some concrete systems.

In this paper we will use standard Banach space notation as explained
in detail in [12] or [6]. The basic reference for simple facts we are going
to use about quasi-Banach space is [3].

Definition 1. A biorthogonal system (xn , xn*)n # F is called a quasi-
greedy system if for each x # X the sequence Gm(x) converges to x in norm.
If this system is a basis we will use the phrase quasi-greedy basis.

Clearly every unconditional basis is a quasi-greedy basis. Let us recall
the definition of the best m-term approximation. For x # X and m=0, 1, ...
we put

_m(x)=inf {"x& :
n # A

anxn" : |A|�m and an 's are scalars= . (2)

Definition 2. A basis (xn , xn*)n # F is called greedy if there exists a
constant C such that for every x # X we have &x&Gm(x)&�C_m(x).

After the research reported in this paper was practically completed I
received the preprint [4] where the above terminology was introduced, so
I decided to follow this terminology in this note. It is shown in [4]
that each greedy basis is unconditional and an example of a conditional
quasi-greedy basis is given.

The author expresses his gratitude to Professor Aleksander Pe*czyn� ski
for many helpful conversations about the research reported in this paper.

2. QUASI-GREEDY SYSTEMS

Let us start with some general results. The following theorem gives some
natural equivalent conditions for quasi-greedy systems.

Theorem 1. The following conditions are equivalent:

1. The system (xn , xn*)n # F is quasi-greedy.

2. For each x # X the series ��
n=1 x*_(n)(x) x_(n) converges to x where _

is an ordering of F such that ( |x*_(n)(x)| )�
n=1 is a decreasing sequence.
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3. There exists a constant C such that for any x # X and m=1, 2, ...
we have &Gm(x)&�C &x&.

This theorem is basically a uniform boundedness result. However, since
the operator Gm is non-linear and discontinuous we have to give a direct
proof.

Proof. Clearly 1 � 2

3 O 1. Since the convergence is clear for x's with finite expansion in
the biorthogonal system, let us assume that x has an infinite expansion.
Take x0=�n # A anxn such that &x&x0&<= where A is a finite set and
an {0 for n # A. If we take m big enough we can ensure that Gm(x&x0)=
�n # B xn*(x&x0) xn with B#A and Gm(x)=�n # B xn*(x) xn . Then

&x&Gm(x)&�:(&x&x0&+&x0&Gm(x)&)

�:(=+&Gm(x0&x)&)�:(C+1) =.

This gives 1.

1 O 3. Let us start with the following lemma.

Lemma 1. If 3 does not hold, then for each constant K and each finite set
A/F there exists a finite set B/F disjoint from A and a vector x=
�n # B an xn such that &x&=1 and &Gm(x)&�K for some m.

Proof. Let us fix M to be the maximum of the norms of the (linear)
projections P0(x)=�n # 0 xn*(x) xn where 0/A. Let us start with a vector
x1 such that &x1&=1 and &Gm(x1)&�K1 where K1 is a big constant to be
specified later. Without loss of generality we can assume that all numbers
|xn*(x1)| are different. For x2=x1&�n # A xn*(x1) xn we have &x2&�
:(M+1) and Gm(x1)=Gk(x2)+P0(x1) for some k�m and 0/A. Thus
&Gk(x2)&�

K1
: &M and for x3=x2 } &x2&&1 we have &Gk(x3)&�(K1 �:&M)�

(1+M) :. Let us put

$=inf[ |xn*(Gk(x3))| : xn*(Gk(x3)){0]

and take a finite set B1 such that for n � B1 we have |xn*(x3)|�$�2. Let
us take ' very small with respect to |B1| and |A| and find x4 with finite
expansion such that &x3&x4&<'. If ' is small enough we can modify all
coefficients of x4 from B1 and A so that the resulting x5 will have its
k biggest coefficients the same as x3 and &x4&x5&<$. Moreover x5 will
have the form x5=�n # B xn*(x5) xn with B finite and disjoint from A.
Since &x5&�:(&x4&+$)�:(:(1+')+$)�C: and Gk(x5)=Gk(x3), for

x=x5 } &x5&&1 we get &Gk(x)&�(
K1
: &M)(:+:M)&1 (C:)&1 which can

be made �K if we take K1 big enough. K
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Using Lemma 1 we can apply the standard gliding hump argument to
get a sequence of vectors yn=�k # Bn

ak xk with sets Bn disjoint and
&yn&=1, a decreasing sequence of positive numbers =n�2&n such that if
xk*( yn){0 then |xk*( yn)|�=n and a sequence of integers mn such that
&Gmn

( yn)&�2n >n&1
j=1 =&1

j . Now we put x=��
n=1 (>n&1

j=1 =j) yn . This series
is clearly convergent in X. If we write xt�n # F bn xn we infer that

inf { |bn | : n # .
j

s=1

Bs and bn {0=� `
j

s=1

=s�max { |bn | : n � .
j

s=1

Bs = .

This implies that for k=� j&1
s=1 |Bs |+mj we have

Gk(x)= :
n� j \ `

n&1

s=1

=s+ yn+Gmj \ `
j

s=1

=s+ yj+1

so &Gk(x)&�:&1(>n&1
s=1 =s) &Gmj

yj+1&&C�2 j+1�:&C. Thus Gm(x) does
not converge to x. K

Let us now introduce the following definition:

Definition 3. A system (xn , xn*)n # F is called unconditional for
constant coefficients if there exist constants C and c>0 such that for each
finite A/F and each sequence of signs (=n)n # A=\1 we have

c " :
n # A

xn"�" :
n # A

=nxn"�C " :
n # A

xn". (3)

Definition 3 is justified by the following observation.

Proposition 2. Every quasi-greedy system is unconditional for constant
coefficients.

Proof. For a given sequence of signs (=n)n # A let us define the set A1=
[n # A : =n=1]. For each $>0 and $<1 we apply Theorem 1 and we get

" :
n # A1

xn"�C " :
n # A1

xn+ :
n # A"A1

(1&$) xn".

Since this is true for each $>0 we easily obtain the right hand side
inequality in (3). The other inequality follows by analogous arguments. K

Remark. Let us clarify a bit the problem of non-uniqueness of Gm(x). In
our definition of quasi-greedy system we require that for each x # X we can
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choose (if there is a choice) a Gm(x) such that Gm(x) � x. The statements
2 and 3 of Theorem 1 are also to be understood in this way��in 2 we think
about one convergent decreasing rearrangement and in 3 we think about
one good Gm(x). However Proposition 2 immediately imply that those
reservations are not essential. It shows that if (xn , xn*)n # F is quasi-greedy,
then any series ��

n=1 x*_(n)(x) x_(n) such that ( |x*_(n)(x)| ) is decreasing, con-
verges to x. This implies that we have convergence for any choice of Gm(x).

Our definitions of a quasi-greedy system and of the operator Gm depend
on the normalisation of the system considered. This, however, is not
essential. Namely we have

Proposition 3. Suppose that (xn , xn*)n # F is a quasi-greedy system as
discussed. Let (*n)n # F be a sequence of numbers such that 0<a=:
infn # F |*n |�b=: supn # F |*n |<�. Then the system (*nxn , xn* �*n)n # F is also
quasi-greedy.

Proof. By homogeneity we can and will assume that b=1. Let G1
m be

the greedy approximation operator corresponding to the system (*n xn ,
xn* �*n)n # F . Let us fix x # X and a natural number m. Explicitly we have
G1

m(x)=�n # A xn*(x) xn where A/F is a set of cardinality m such that
|xn*(x)�*n |�|xs*(x)�*s | whenever n # A and s � A. Let us write '=infn # A

|xn*(x)| and let V=[n # F : |xn*(x)�'] and U=[n # F : |xn*(x)|�'�a]. We
put |V |=k and |U |=l. Clearly U/V so l�k. Using those notations we
can write

G1
m(x)=Gk(x)& :

s # B

xs*(x) xs

=Gl (x)+\Gk(x)&Gl (x)& :
s # B

xs*(x) xs + , (4)

where B is a certain subset of V"U and so we know that for s # B we have

'�|xs*(x)|�'�a. (5)

Clearly Gk(x)&Gl (x)=�n # V"U xn*(x) xn . Note that for each finite set
D/F and each set of numbers (an)n # D we have

" :
n # D

an xn"�C " :
n # D

xn". (6)
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To see (6) we write a dyadic expansion of each an namely an=
\��

s=1 a(n, s) 2&s where a(n, s)=0, 1. Then from Proposition 2 we have

" :
n # D

anxn"=" :
�

s=1

2&s :
n # D

\a(n, s) xn"
�41�p :

�

s=1

2&sp " :
n # D

\a(n, s) xn"�C.

Thus we infer from (5) and (6) that

"Gk(x)&Gl (x)& :
s # B

xn*(x) xn"�C " :
n # V"U

('�a) xn"
�C2�a " :

n # V"U

xn*(x) xn"
�C2�a &Gk(x)&Gl (x)&. (7)

Comparing (4) and (7) we infer that &G1
m(x)&�C$ &x& so by Theorem 1

the system (*nxn , xn* �*n)n # F is a quasi-greedy system. K

Remark. Proposition 2 allows us to show that the trigonometric system
in Lp(T) with 1�p�� is quasi-greedy only if p=2, because only then it
is unconditional for constant coefficients. To see this observe that for
1<p�� we have &�N

n=1 eint& p
p tN p&1 and for p=1 we have

&�N
n=1 eint&tlog(N+1). On the other hand for 1�p<� the average over

all signs \ of &�N
n=1\eint& p

p can be written as �1
0 &�N

n=1 rn(s) eint& p
p ds

where rn(s) are classical Rademacher functions. It is well known in the
theory of type and cotype of Banach spaces (see [12]) and easily follows
from the Khintchine's inequality that �1

0 &�N
n=1 rn(s) eint& p

p dstN p�2 so the
trigonometric system in Lp(T) (1�p<�) an be quasi-greedy only when
p&1= p�2 i.e. when p=2. In the case p=� we can invoke the
Rudin�Shapiro polynomials i.e. polynomials ,N=�N

n=1\eint such that
&,N&��C - N. This argument reproves results from [11] remark 2.

Now we will discuss examples of conditional quasi-greedy bases. Let us
recall

Definition 4. A biorthogonal system (resp. basis) (xn , xn*)n # F is a
p-Besselian system, 0<p<� if there exists a constant C such that for each
x # X we have

\ :
n # F

|xn*(x)| p+
1�p

�C &x&.
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A 2-Besselian system (resp. basis) will be called Besselian.

Theorem 2. Suppose X is a quasi-Banach space with Besselian basis
(xn , xn*)�

n=1 . The space X�l2 has a quasi-greedy basis. If the basis
(xn , xn*)�

n=1 is conditional we get a conditional quasi-greedy basis in X�l2 .

Before we start the proof let us recall some classical notions from Banach
space theory. If X and Y are Banach spaces then the symbol X�Y denotes
the direct sum of those spaces i.e. the space of all pairs (x, y) with x # X
and y # Y. This is a linear space with coordinatewise addition and scalar
multiplication. As a norm on X�Y we can take &(x, y)&=(&x&2+
&y&2)1�2. We will identify an element x # X with a pair (x, 0) # X�Y, so in
particular x+ y means (x, y) whenever x # X and y # Y. If we have a
sequence of Banach spaces (Xn)�

n=1 and a number 1�p<� then
(��

n=1 Xn)p denotes the space of all sequences (xn)�
n=1 such that xn # Xn for

n=1, 2, ... and &(xn)&=(��
n=1 &xn& p)1�p<�.

Proof. Let us recall some facts about Olevskii matrices (cf. [7]). For
k=1, 2, ... we define 2k_2k matrices Ak=(a (k)

ij )2k

i, j=1 by the following
formulas

a (k)
i1 =2&k�2 for i=1, 2, ..., 2k

and for j=2s+& with 1�&�2s and s=0, 1, 2, ..., k&1 we put

2(s&k)�2 for (&&1) 2k&s<i�(2&&1) 2k&s&1

a (k)
ij ={&2 (s&k)�2 for (2&&1) 2k&s&1<i�&2k&s

0 otherwise.

One easily checks that the Ak are orthonormal matrices and there exists a
constant Cp such that for all i, k we have

:
j

|a (k)
ij | p�Cp for p>0. (8)

Note that Ak is a matrix which maps an orthonormal Haar-like system in
R2k

onto the unit vector basis. We put Nk=210k
and define Sk so that

S1=N1&1 and Sk+1&Sk=Nk&1. Let (er)
�
r=1 denote the unit vector

basis in l2 . Let us denote by (gs)
�
s=1 /X�l2 the following basis

x1 , e1 , ..., eS1
, x2 , eS1+1 , ..., eS2

, x3 , eS2+1 , ..., eS3
, x4 , ....
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To each block [xk , eSk&1+1 , ..., eSk
] we apply the matrix A10k

to get a
new system

�k
i =

xk

- Nk

+ :
Nk

j=2

a10k

ij eSk&1+ j . (9)

The system �1
1 , ..., �1

N1
, �2

1 , ..., �2
N2

, ..., ordered in this fashion will be
denoted by (�j)

�
j=1 . It is clear that 0<infj &�j&�supj &�j&<� and that

(� j)
�
j=1 is a complete biorthogonal system in X�l2 with the biorthogonal

functionals given by the formula

�k V
i =

xn*

- Nk

+ :
Nk

j=2

a10k

ij e*Sk&1+ j .

It is also a basis in X�l2 .
Since the system (gj)

�
j=1 is a basis it suffices to check that for each k the

system (�k
i )Nk

i=1 have uniformly bounded basis constant. But on each sub-
space span[xk , eSk&1+1 , ..., eSk

] the lNk
2 norm and the norm in X�l2 are

uniformly equivalent, so any orthonormal basis in this finite dimensional
space has uniformly bounded basis constant in X�l2 . If (xn)�

n=1 is a con-
ditional basis then (�j)

�
j=1 is also conditional because (xn)�

n=1 is a block
basis of (�j)

�
j=1 .

Thus we still have to show:
If f =��

j=1 a j�j # X�l2 with & f &=1, and _ is a permutation such that
|a_( j) | is a decreasing sequence, then the series ��

j=1 a_( j) �_( j) converges in
X�l2 .

First observe that (gs)
�
s=1 is a Besselian basis in X�l2 , so we can define

an operator I: X�l2 � l2 as I(��
s=1 as gs)=(as)

�
s=1 . Since (�j)

�
j=1 is

obtained from (gs)
�
s=1 by the action of a unitary matrix we infer that

(�j)
�
j=1 is also Besselian and (I�j)

�
j=1 is an orthonormal basis in l2 . Let P

denote the natural projection from X�l2 onto l2 . Note that I | [0]�l2 is
an isometric embedding. Let Q denote the orthogonal projection onto
I([0]�l2).

Let us write f as a double sum f =��
k=1 �Nk

i=1 bk
i �k

i . Since (�j)
�
j=1 is

Besselian we get

:
�

k=1

:
Nk

i=1

|bk
i |2�C. (10)

This implies that the series ��
k=1 �Nk

i=1 bk
i I(�k

i ) converges in l2 in any
order so also ��

k=1 �Nk
i=1 bk

i QI(�k
i ) converges in any order. This implies

that also the series ��
k=1 �Nk

i=1 bk
i P�k

i converges in X�l2 in any order.
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Thus we have to study the convergence of the series ��
k=1 �Nk

i=1

bk
i (I&P) �k

i =��
k=1 �Nk

i=1 bk
i (xk �- Nk ) but ordered in such a way that

coefficients |bk
i | form a decreasing sequence. Let us denote

4k =[i : N &1
k <|bk

i |<N &1�10
k ]

4$k=[i : |bk
i |�N &1

k ]

4"k=[i : |bk
i |�N &1�10

k ].

Note that for each k we have �i # 4$k
|bk

i |�- Nk �Nk } 1�Nk } 1�- Nk �
N&1�2

k . Thus the series ��
k=1 � i # 4$k

(bk
i �- Nk ) xk is absolutely convergent.

It follows from (10) that for each k, �Nk
i=1 |bk

i |2�C so C��i # 4"k
|bk

i | 2�
|4"k | N &1�5

k which gives |4"k |�CN 1�5
k . From this we get

:
�

k=1

:
i # 4"k

|bk
i |

- Nk

� :
�

k=1

|4"k |
1

- Nk

� :
�

k=1

N &3�10
k <�

so the series ��
k=1 � i # 4"k

(bk
i �- Nk ) xk is absolutely convergent. Since

N&1�10
k+1 �N &1

k we see that the decreasing permutation of the series
��

k=1 � i # 4k
bk

i �k
i has to take place inside each 4k . But in this case (since

(�k) is a basis in X�l2) the series over k converges in X�l2 . From the
Schwarz inequality and (10) we get

:
i # 4k

|bk
i |

- Nk

�\ :
i # 4k

|bk
i |2+

1�2

( |4k | N &1
k )1�2=o(1)

so we see that the series ��
k=1 � i # 4k

(bk�- Nk ) xk converges when
rearranged in decreasing order of the coefficients (bk

i ). K

This proof is a modification of an argument used in the main result
in [5].

Let us note some corollaries from the above construction.

Corollary 4. A separable, infinite dimensional Hilbert space has a
quasi-greedy conditional basis.

Proof. It is known (cf. e.g. [7]) that a Hilbert space has a conditional
Besselian basis, so writing l2=l2 �l2 we get the claim. K

Corollary 5. The space lp for 1<p<� has a conditional
quasi-greedy basis.

Proof. It is well known (cf. [8]) that lp is isomorphic to (��
n=1 ln

2)p .
Let us fix (�j)

�
j=1 , a conditional quasi-greedy basis in l2 which exists by
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Corollary 4. Then ln
2 is isometric to span(�j)

n
j=1 so the obvious basis in

(��
n=1 span(� j)

n
j=1)p is a conditional quasi-greedy basis in lp . K

Corollary 6. If X has an unconditional basis and contains a com-
plemented subspace isomorphic to lp with 1<p<� then X has a conditional
quasi-greedy basis.

Proof. We write XtY�lp tY�lp �lp tX�lp so taking the uncon-
ditional basis in the first summand and a conditional quasi-greedy basis in
lp (cf. Corollary 5) we get a conditional quasi-greedy basis in X. K

Note that the above Corollary 6 gives the existence of conditional
quasi-greedy bases in Lp[0, 1] with 1<p<� and also in H1 .

The following theorem shows that quasi-greedy bases in a Hilbert space
are rather close to unconditional bases.

Theorem 3. Let (xn)�
n=1 be a normalized quasi-greedy basis in a Hilbert

space H. Then there exist constants 0<c�C<� such that for each
x=��

n=1 anxn we have

c &(an)&2, ��&x&2�C &(an)&2, 1 , (11)

where & }&2, � and & }&2, 1 are natural Lorentz sequence space norms. In
particular such a basis is p-Besselian for each p>2.

Let us recall the definition of the relevant Lorentz norms. For a sequence
(an)�

n=1 we denote by (an*)�
n=1 the non-increasing rearrangement of the

sequence ( |an | )�
n=1 . Then &(an)�

n=1&2, �=supn - n an* and &(an)�
n=1&2, 1=

��
n=1 n&1�2an*.

Proof. First observe that applying Khintchine's inequality (or type and
co-type 2 of the Hilbert space) we infer from Proposition 2 that for each
finite set of indices A and each choice of signs we have &�n # A\xn&t

- |A|. Now let us denote nk=|[n : |an |�2&k]|. Reordering the series
�n an xn so that |an |z0 we have

":
n

anxn"�2 :
k

2&k " :
nk

s=1

xs"�C :
k

2&k
- nk

�C :
n=1

1

- n
|an |.

To prove the other inequality observe that from the Abel transform we
obtain that if ��

n=1 yn converges in a Banach space X and supN

&�N
n=1 yn &=C and :n z0 then the series ��

n=1 :n yn converges and
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supN &��
n=1 :n yn&�C:1 . Now we consider the series ��

n=1 anxn

and assume that |an |z0. Since the basis is quasi-greedy this series
converges and supN &�N

n=1 anxn&�C &x&, so for each N we have
supk &�k

s=1 aN+1&sxN+1&s &�2C &x&. Applying our observation to the
sequence :k=|an | |aN+1&k | &1 we get

" :
N

s=1

aN+1&s |aN |
|aN+1&s |

xN+1&s"�2C &x&.

From this, using the unconditionality for constant coefficients we get

|aN | " :
N

s=1

xs"�C &x&

which gives supn |an | - n�C &x& which completes the proof. K

3. OPTIMALITY

Suppose now that X is a quasi-Banach space with an unconditional basis
(xn , xn*) and let us assume that infn # F &xn&>0 so supn # F &xn*&<�. An
unconditional basis is called a lattice basis if &�n an xn&�&�n bnxn & when-
ever |an |�|bn | for all n. If we have an unconditional basis we can always
introduce an equivalent lattice norm by

_x_=sup {":
n

anxn*(x) xn" : |an |�1= .

With this norm we have &x&�_x_�C &x& and _xn _=&xn&.

Proposition 7. Let X be a quasi-Banach space with lattice basis
(xn , xn*). For each x and each m=1, 2, ... there exists an element Tm(x)
of best m-term approximation i.e. Tm(x)=�n # A anxn with |A|=m and
&x&Tm(x)&=_m(x).

Proof. Let xk=�n # Ak
ak

n xn with |Ak |=m be such that &x&xk& �
_m(x). Using a standard diagonal procedure we can assume that for each
n limk � � ak

n=an . Clearly the an are not zero for at most m indices n. Write
x�=�n an xn=�n # A anxn where |A|=m. If we take B a finite set, B#A,
then

&x&xk&�&PBx&PBxk& � &PBx&x�&.
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Thus for each such set B we have _m(x)�&PBx&x�&=&PB(x&x�)&.
Taking a sequence of B's exhausting the whole index set we obtain _m(x)�
&x&x�&, so we can put Tm(x)=x�. K

Let us recall the following quantities essentially considered in [10]:

em =sup
x # X

&x&Gm(x)&
_m(x) \with

0
0

=1+
+m= sup

k�m

sup[&�n # A xn& : |A|=k]
inf[&�n # A xn& : |A|=k]

.

The importance of those quantities is clear. The sequence em estimates the
error between the greedy algorithm Gm and the best possible m-term
approximation. The quantity +m measures some sort of asymmetry of the
basis. The important fact is that they are closely connected.

Theorem 4. Let (xn , xn*) be a lattice basis in a quasi-Banach space X.
Then for each m=1, 2, ... we have

1
2:

+m�em�2:+m . (12)

The proof of this theorem follows the ideas from [10].

Proof. Let us fix m and x=�n an xn # X. Let Tm(x)=�n # A bnxn be the
best m-term approximation. Let Gm(x)=�n # B an xn . Note that

&x&PA x&=&x&Tm(x)+PA Tm(x)&PA x&=&(Id&PA)(x&Tm(x))&

�&x&Tm(x)&=_m(x). (13)

Thus we can take Tm(x)=PA(x). In order to estimate &x&Gm(x)& write

x&Gm(x)=x&PAx+PA x&PBx=(x&PA x)+PA"Bx&PB"A x

=PF"B(x&PAx)+PA"Bx

so &x&Gm(x)&�:(&x&Tm(x)&+&PA"Bx&)�:(_m(x)+&PA"Bx&). Note
now that max[ |xn*(x)| : n # A"B] :=c�min[ |xn*(x)| : n # B"A] and also
|A"B|=|B"A|�m. This implies that &PA"Bx&�c &�n # A"B xn& and &PB"A x&
�c &�n # B"A xn&. Thus estimating c from the second inequality and
substituting it into the first we get

&PA"Bx&�
&PB"A x&

&�n # B"A xn&
} &PA"Bx&�+m &PB"A x&�+m_m(x) (14)
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so we get

&x&Gm(x)&�:_m(x)(1++m)�2:+m_m(x).

In order to prove the other inequality we will need the following

Lemma 8. For each m there exist disjoint sets A and B with |A|=|B|�m
such that &�n # A xn& &�n # B xn&&1�(2:)&1 +m .

Proof. If +m�2: the claim is obvious. Otherwise take sets A and B
with |A|=|B|�m such that &�n # A xn& &�n # B xn&&1>max(2:, +m&=).
For simplicity write

a=" :
n # A

xn" b=" :
n # B

xn"
a1=" :

n # A & B

xn" a2=" :
n # A"B

xn".
With this notation we have 2<(1�:)(a�b)�(1�:)(a�a1) so a1<(1�2:) a.
This implies

a
b

�
:(a1+a2)

b
=:

a1

b
+:

a2

b
<

a
2b

+:
a2

b

so a2 �b>(1�2:)(a�b). Thus it suffices to replace A by any set of proper
cardinality which contains A"B and is disjoint with B. K

Now let us take sets as in Lemma 8 and denote |A|=|B|=k�m. Let
C#A be a set of cardinality m disjoint with B. Consider

x :=(1+=) :
n # B

xn+(1+=�2) :
n # C"A

xn+ :
n # A

xn . (15)

Then Gm(x)=x&�n # A xn so &x&Gm(x)&=&�n # A xn &. From (13) we see
that

_m(x)=min[&PSx& : S/B _ C and |S|=k]

�&PBx&�(1+=) " :
n # B

xn".

This and Lemma 8 give

em�
&�n # A xn &

_m(x)
�

&�n # A xn &
(1+=) &�n # B xn&

�
1

(1+=) 2:
+m .

Since = was arbitrary we get the claim. K
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Remark. Actually one can show that for x defined in (15) we have
_m(x)t&�n # B xn&. Namely &PSx&� 1

1+= &�n # S xn& and since +m�
&�n # A xn& &�n # S xn &&1 from Lemma 8 we get

" :
n # S

xn"�+&1
m " :

n # A

xn"�
1

2:
&�n # B xn&
&�n # A xn& " :

n # A

xn"�
1

2: " :
n # B

xn"
so _m(x)� 1

2(1+=) : &�n # B xn &.

Remark. Observe that we need to have +m defined as supk�m in order
to have the above estimate. As an example take ln

��l1 with the natural
basis. Let ( fj)

n
j=1 be the basis in ln

� and (ek)�
k=1 the basis in l1 . For m>n

and x :=2 �n
j=1 fj+�m

k=1 ek we have _m(x)=2 and Gm(x)=2 �n
j=1 f j+

�m&n
k=1 ek so &x&Gm(x)&=n which gives em�n. Also +m=n. But

!m :=
sup[&�n # A xn& : |A|=m]
inf[&�n # A xn& : |A|=m]

=
m

m&n

so no estimate of the form em�C!m is valid for all m unless C�n. But n
can be arbitrary.

For general biorthogonal systems we have the following result.

Theorem 5. Suppose (xn , xn*)n # F is a complete biorthogonal system in a
quasi-Banach space X with &xn&=1 for n # F. Assume that for some
0<c�C and 0<p�q�� we have

c \ :
n # F

|xn*(x)|q+
1�q

�&x&�C \ :
n # F

|xn*(x)| p+
1�p

. (16)

Then em�Km1�p&1�q where K depends only on :, C and c.

The proof is similar to the proof of Theorem 4 and Theorem 2.1
from [11].

Proof. Let us fix an x # X and m=1, 2, .... For any given =>0 we fix
almost best m-term approximation i.e. Tm=�n # A bnxn such that
&x&Tm&�_m(x)+=. First note that for any finite subset V/F we have

&PV x&�C \ :
n # V

|xn*( p)| p+
1�p

�C |V | 1�p&1�q \ :
n # V

|xn*(x)|q+
1�q

�
C
c

|V |1�p&1�q &x&. (17)
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Let Gm(x)=�n # B anxn . We write

&x&Gm(x)&=&x&PA x+PA x&Gm(x)& (18)

�:(&x&PA x&+&PAx&Gm(x)&). (19)

The first summand is estimated as

&x&PAx&�:(&x&Tm&+&PA(x&Tm)&)

�:(_m(x)+=+&PA&(_m(x)+=))

so

&x&PA x&�: \_m(x)+=+
C
c

|A| 1�p&1�q (_m(x)+=)+ . (20)

The second summand we write as

&PA(x)&PBx&�:(&PA"Bx&+&PB"Ax&)

and obtain

&PB"Ax&=&PB"A(x&Tm)&�
C
c

|B"A| 1�p&1�q (_m(x)+=). (21)

To estimate the other summand we note that |B"A|=|A"B| and |xn*(x)|�
|xs*(x)| whenever n # B"A and s # A"B. Thus

&PA"Bx&�C \ :
n # A"B

|xn*(x)| p+
1�p

�\ :
n # B"A

|xn*(x)| p+
1�p

�C |B"A|1�p&1�q \ :
n # B"A

|xn*(x)|q+
1�q

=C |B"A|1�p&1�q \ :
n # B"A

|xn*(x&Tm)| q+
1�q

�
C
c

|B"A|1�p&1�q &x&Tm&

�
C
c

|B"A|1�p&1�q (_m(x)+=). (22)

Since = was arbitrary and |B"A|�m=|A| from (20), (21) and (22) we
obtain &x&Gm(x)&�K(C, c, :) _m(x) } m1�p&1�q. K
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Remark. Using Theorem 3 and arguing like in the above proof we can
get that for each quasi-greedy basis in a Hilbert space we have em�
C ln(m+1).

Now we will list some immediate consequence of Theorem 5.

Corollaries.

(a) If (xn)�
n=1 is a complete, uniformly bounded orthonormal system

(in particular the trigonometric system) then in Lp[0, 1] with 1�p�� we
have em�Km |1�2&1�p|. This follows immediately from F. Riesz inequality
which says that for 2�p�� we have

\ :
�

n=1

|(xn , f ) |2+
1�2

�& f &p�M \ :
�

n=1

|(xn , f ) | p$+
1�p$

where 1
p+ 1

p$=1, and also the dual inequality valid for 1�p�2. This proves
Theorem 2.1 from [11]. This is an optimal inequality as was shown for the
trigonometric system in [11] Remark 2. For p>1 it also follows from
Remark 2.

(b) Since for any semi-normalized biorthogonal system (xn , xn*) in a
Banach space X we have

c sup
n

|xn*(x)|�&x&�C :
n

|xn*(x)|

we infer that for each such system we have em�Cm. This estimate is also
optimal, even for unconditional bases. One easily checks that for the natural
unconditional basis in l1�c0 one has em�m.

(c) In each super-reflexive space, in particular in Lp[0, 1] with 1<
p<�, each semi-normalized basis (xn , xn*) satisfies equation (16) for some
1<q�p<� (see [1]). So we obtain that for each semi-normalized basis in
a super-reflexive space we have em�Km; with ;<1.

(d) If (xn , xn*) is a semi-normalized unconditional basis in Lp with
1<p<�, then for p�2 it satisfies

c \ :
n # F

|xn*(x)| p+
1�p

�&x&p�C \ :
n # F

|xn*(x)| 2+
1�2

and the dual inequality for 1<p�2. Thus for an unconditional basis in Lp

we have em�Km |1�2&1�p|. Also this estimate is optimal. To see it consider Lp

as being isomorphic to l2�Lp and take the natural basis in l2 and the Haar
basis in Lp .
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4. MULTIPLE HAAR SYSTEM

In this section we will discuss the efficiency of the greedy algorithm with
respect to the multi-dimensional Haar wavelet. For a more detailed exposi-
tion of the general background sketched below the reader may consult
[13]. We will argue in the context of the square function for 0<p<�. To
start we define

1 if t # [0, 1
2),

H(t)={&1 if t # [ 1
2 , 1), (23)

0 otherwise.

For a dyadic interval I=[k2&n, (k+1) 2&n) we put hI (t)=2n�pH(2nt&k).
For a dyadic rectangle in J=I1_ } } } _Id /Rd we put

h (d )
J (t)=hI1

(t1) } } } hId
(td). (24)

The set of all dyadic intervals in R will be denoted by D(1) and the set
of all dyadic rectangles in Rd will be denoted by D(d ). The system
(h (d )

i )I # D(d ) is a complete orthogonal system in L2(Rd) and is normalized in
Lp(Rd). Note that formally the definition of this system depends on p but
since p will be fixed in our future arguments we will not indicate this
dependence explicitely.

A function f =�I # D(d ) aI h (d )
I is in Hp(Rd) if the norm

_ f _=\|Rd \ :
I # D(d )

|aIh (d )
I (t)|2+

p�2

dt+
1�p

(25)

is finite. It is known by the Littlewood�Paley theory that for 1<p<� this
norm is equivalent to the usual Lp norm and we have Hp(Rd)=Lp(Rd).
For 0<p�1 we get the dyadic Hp -space.

The main result of this section is the following

Theorem 6. For 0<p<� and d=1, 2, ... for the system (h (d )
I )I # D(d ) in

Hp(Rd) we have

em t(log m) (d&1) |1�2&1�p|. (26)

This result substantiates the conjecture formulated (for p>1) in [10]
and extends results from [9] and [10]. Our argument is a modification of
the argument from [2]. Let us start with a lemma which summarises the
argument from the first few lines of the proof of Proposition 3.3 from [2].
We repeat the short proof of this lemma for the convenience of the reader.
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Lemma 9. For 0< p<� and any finite subset B/D(1) we have

2&1�p |B|1�p� }}} :
I # B

hI }}} .
Proof. Let us denote 2M(t)=maxI # B |hI (t)| p. From the definition of the

Haar system we infer that 2M(t)� 1
2 �I # B |hI (t)| p so

}}} :
I # B

hI }}}�\|R

2M(t) dt+
1�p

�\ 1
2 |

R

:
I # B

|hI (t)| p dt+
1�p

=2&1�p |B|1�p. K

Proposition 10. For any d=1, 2, ..., any finite B/D(d ), |B|=m and
any numbers (aI)I # B we have

(a) if 0< p�2 then

(log m) (1�2&1�p) d \ :
I # B

|aI | p+
1�p

� }}} :
I # B

aIh (d )
I }}}�\ :

I # B

|aI | p+
1�p

(27)

(b) if 2�p<� then

\ :
I # B

|aI | p+
1�p

� }}} :
I # B

aIh (d )
I }}}�(log m) (1�2&1�p) d \ :

I # B

|aI | p+
1�p

. (28)

Proof. The right hand side inequality in (27) is easy (it is actually the
type of Hp). We simply apply the Ho� lder's inequality with exponent 2

p�1
to the inside sum and we get

\|Rd \ :
I # B

|aIh (d )
I (t)| 2+

p�2

dt+
1�p

�\|Rd
:

I # B

|aIh (d )
I (t)| p dt+

1�p

=\ :
I # B

|aI | p+
1�p

.

Now let d=1 and 0< p�2. Let _: [1, 2, ..., |B|] � B be such that |a_(i) | is
a decreasing sequence. Fix s such that 2s&1<m�2s and put fk=
(�2k

j=2k&1+1 |a_( j) h_( j) |2)1�2. Then

}}} :
I # B

aIhI }}}=\|R \ :
s

k=0

f 2
k(t)+

p�2

dt+
1�p

=\|R \ :
s

k=0

( f p
k(t))2�p+

p�2

dt+
1�p

�\\ :
s

k=0
\|R

f p
k(t) dt+

2�p

+
p�2

+
1�p

=\ :
s

k=0
}}} :

2k

j=2k&1+1

a_( j)h_( j) }}}
2

+
1�2
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�\ :
s

k=0
}}} :

2k

j=2k&1+1

a_(2k) h_( j) }}}
2

+
1�2

and from Lemma 9

�\ :
s

k=0

22(k&1)�p |a_(2k) |2+
1�2

.

Since

:
I # B

|aI | p= :
|B|

j=1

|a_( j) | p� :
s

k=0

2k |a_(2k) | p�s1& p�2 \ :
s

k=0

22k�p |a_(2k) | 2+
p�2

we get

}}} :
I # B

aIhI }}}�2&1�p(log m)&(1& p�2) 1�p \ :
I # B

|aI | p+
1�p

=2&1�p(log m)1�2&1�p \ :
I # B

|aI | p+
1�p

.

Now we will prove the left hand side inequality in (27) by induction on d.
Suppose we have (27) valid for d&1. Given a finite set B/D(d ) we write
each I # B as I=J_K with J # D(1) and K # D(d&1) and then h (d )

I (t)=
hJ (t1) } h (d&1)

K (!) where !=(t2 , ..., td). Now we estimate

}}} :
I # B

aIh (d )
I }}}=\|R

|
R d&1 \ :

I # B

|aI hJ (t1)|2 |h (d&1)
K (!)|2+

p�2

dt1 d!+
1�p

=\|R \|Rd&1 \:
K \:

J

|aI hJ (t1)|2+ |h (d&1)
K (!)|2+

p�2

d!+ dt1+
1�p

.

(29)

For each t1 we apply the inductive hypothesis (note that the number of
different K's is at most |B| ) and we continue the estimates

�C(d&1, p)(log |B| ) (d&1)(1�2&1�p)_\|R

:
K \:

J

|aIhJ (t1)| 2+
p�2

dt1+
1�p

�C(d&1, p)(log |B| ) (d&1)(1�2&1�p)_\:
K
|

R \:
J

|aIhJ (t1)| 2+
p�2

dt1+
1�p

.

(30)
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Now we apply the estimate (27) for d=1 and we continue as

�C(d&1, p)(log |B| ) (d&1)(1�2&1�p) \:
K

:
J

|aI | p+
1�p

C(1, p)(log |B| ) (1�2&1�p)

=C(d, p)(log |B| )d(1�2&1�p) \ :
I # B

|aI | p+
1�p

. (31)

The inequality (28) follows by duality from (27) for 1< p�2. K

Proposition 11. For every finite set B/D(d ) we have

(a) if 0< p�2 then

C(d, p)(log |B| ) (1�2&1�p)(d&1) |B|1�p� }}} :
I # B

h (d )
I }}}�|B|1�p (32)

(b) if 2�p<� then

|B|1�p� }}} :
I # B

h (d )
I }}}�C(d, p)(log |B| )(1�2&1�p)(d&1) |B|1�p. (33)

Proof. As in the previous Proposition 10 inequality (33) follows by
duality from (32). Note also that (32) for d=1 is Lemma 9. For d>1 we
proceed like in the proof of Proposition 10. We write each I # B as J_K
and estimate _�I # B h (d)

i _ exactly like in (29) and (30). Since aI=1 instead
of (27) for d=1 we apply Lemma 9 and we obtain

}}} :
I # B

h (d )
I }}}�C(d&1, p)(log |B| ) (1�2&1�p)(d&1) 2&1�p |B|1�p. K

Proof of Theorem 6. The estimate em�C(log m) |1�2&1�p| (d&1) follows
immediately from Theorem 4 and Proposition 11. The estimate from below
was proved in [9]. K

Theorem 6 covers and extends the main results about the Haar system
proved in [9] and [10]. In particular it gives a new proof that the Haar
wavelet is a greedy basis in Lp(R). One can note that the Haar system is
not the only such basis in Lp for 2< p<�. Let us recall the definition of
the Rosenthal space (cf. [6] p. 169). Fix 0<;�1 and define a norm on
sequences (an)�

n=1 as

&(an)&;=\ :
�

n=1

|an | p+
1�p

+\ :
�

n=1

|anw;
n |2+

1�2
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with w;
n=n&;( p&2)�2p. It is known that for all ;'s we get the same space X

(called Rosenthal space) and that X�Lp is isomorphic to Lp . However for
different ;'s we get different unconditional bases in X. If (en)�

n=1 denotes
the unit vector basis then for each finite set A/N we have

" :
n # A

en"
;

=|A|1�p+\ :
n # A

|w;
n | 2+

1�2

�|A|1�p+\ :
|A|

n=1

|w;
n |2+

1�2

�|A|1�p+C |A| (1&;)�2&;�p

For ;=1 we get &�n # A en&1
t |A|1�p so this basis and the Haar basis give

an unconditional greedy basis in Lp which is not equivalent to the Haar
basis.

For 0<;<1 we get &�N
n=1 en&;

tN (1&;)�2+;�p so for this basis in X
and the Haar basis in Lp we get an unconditional basis in Lp with

+m tm(1&;)�2+;�pm&1�p
tm(1&;)(1�2&1�p)

so we get all possible power type behaviours of em (c.f. Corollary (d) after
Theorem 5).
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